-
[KOITP] 거듭제곱 구하기자료구조 및 알고리즘/문제풀이 2017. 1. 18. 08:35
출 처 : http://koitp.org/problem/SDS_PRO_7_5/read/
시간 제한 메모리 제한 제출 횟수 정답 횟수 (비율) 정답자 수 1.0 초 512 MB 2242 351 (16%) 291 < Comment >
굉장히 쉬운 문제인데 모듈 연산에 대해 잘 모르고 있다보니 쓸데없이 오랜 시간이 걸렸습니다. 기본적으로 모듈 연산이 되어있는 값을 Recursive 함수의 리턴값으로 두고, 이를 곱하고 다시 여기에 모듈 연산을 해 주는 식으로 진행했습니다 .입력받는 a의 값이 매우 클수도 있으므로, 여기도 모듈 연산을 해 주면, 값 출력이 정상적으로 이루어집니다.
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.StringTokenizer; public class Power { public static long MOD = 1000000007; public static long a = 0; public static long m = 0; public static long cache[] = new long[64]; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st = new StringTokenizer(br.readLine()); a = Long.parseLong(st.nextToken()) % MOD; m = Long.parseLong(st.nextToken()); long answer = power(a, m); bw.write("" + answer); bw.flush(); bw.close(); } public static long power(long aa, long mm) { if (mm == 0) return 1; long newa = power(aa, mm/2); if(mm % 2 == 0) { return (newa * newa) % MOD; } else { return ((aa % MOD) * ((newa * newa) % MOD)) % MOD; } } }